Cambridge IGCSE ${ }^{\text {Tw }}$ (9-1)

CHEMISTRY

0971/22
Paper 2 Multiple Choice (Extended)
May/June 2020
45 minutes
You must answer on the multiple choice answer sheet.
You will need: Multiple choice answer sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 A mixture of ice and water is left to stand and the ice melts.
Which row describes what happens as the ice is melting?

	temperature of mixture	energy changes
A	increases	average kinetic energy of particles increases
B	increases	energy is used to overcome attractive forces
C	stays the same	average kinetic energy of particles increases
D	stays the same	energy is used to overcome attractive forces

2 Which piece of apparatus is used to measure $25.0 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide?
A

B

C

D

3 Paper chromatography is used to determine the R_{f} values for four different food colourings. Which food colouring has an R_{f} value of 0.6 ?

4 The diagram shows the electronic structure of a particle with a nucleon number (mass number) of 40.

The table shows the suggestions that three students, 1,2 and 3 , made to identify the particle.

	student		
	1	2	3
particle	Ar	Cl	Ca^{2+}

Which students are correct?
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3

5 The electronic structures of two atoms, P and Q, are shown.

P and Q combine together to form a compound.
What is the type of bonding in the compound and what is the formula of the compound?

	type of bonding	formula
A	ionic	PQ
B	ionic	PQ_{2}
C	covalent	PQ_{2}
D	covalent	PQ

6 Which statement about the structure of a metal explains why metals are malleable?
A The electrons can move freely throughout the lattice.
B The layers of metal ions can slide over each other.
C The metal ions are positively charged.
D There is a strong force of attraction between the metal ions and the electrons.

7 The bonding, structure and melting point of sodium chloride and sulfur dichloride are shown.

compound	bonding	structure	melting point $/{ }^{\circ} \mathrm{C}$
sodium chloride	ionic	giant lattice	801
sulfur dichloride	covalent	simple molecular	-121

Why does sulfur dichloride have a lower melting point than sodium chloride?
A The covalent bonds in sulfur dichloride are weaker than the attractive forces between molecules in sodium chloride.

B The covalent bonds in sulfur dichloride are weaker than the ionic bonds in sodium chloride.
C The attractive forces between molecules in sulfur dichloride are weaker than the attractive forces between molecules in sodium chloride.

D The attractive forces between molecules in sulfur dichloride are weaker than the ionic bonds in sodium chloride.

8 Lead(II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, reacts with potassium iodide, KI , to form a yellow precipitate, PbI_{2}, and a soluble salt, KNO_{3}.

What is the equation for the reaction?
A $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KI} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}$
B $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}$
C $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$
D $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$

9 The Haber process is a reversible reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The reaction has a 30\% yield of ammonia.
Which volume of ammonia gas, NH_{3}, measured at room temperature and pressure, is obtained by reacting 0.75 moles of hydrogen with excess nitrogen?
A $3600 \mathrm{~cm}^{3}$
B $5400 \mathrm{~cm}^{3}$
C $12000 \mathrm{~cm}^{3}$
D $18000 \mathrm{~cm}^{3}$

10 Electrolytes can be broken down by electrolysis.
Which rows are correct for each electrolyte?

	electrolyte	reaction at cathode	product at anode
1	dilute aqueous sodium chloride	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	oxygen
2	concentrated hydrochloric acid	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	chlorine
3	molten aluminium oxide	$2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$	aluminium
4	concentrated aqueous sodium bromide	$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$	bromine

A 1 and 2
B 1 and 4
C 2 and 3
D 3 and 4

11 The electrolysis of aqueous copper(II) sulfate, using inert electrodes, is shown.

Which statement about a reaction at an electrode is correct?
A Copper ions gain electrons at the negative electrode.
B Copper ions gain electrons at the positive electrode.
C Hydrogen ions gain electrons at the negative electrode.
D Hydrogen ions gain electrons at the positive electrode.

12 Methane burns in excess oxygen.
The equation is shown.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Bond energies are shown.

bond	bond energy $/ \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{C}-\mathrm{H}$	410
$\mathrm{O}=\mathrm{O}$	496
$\mathrm{O}-\mathrm{H}$	460

What is the energy change for the reaction?
A $(4 \times 410+2 \times 496)-(2 \times 805+4 \times 460)$
B $(2 \times 805+2 \times 460)-(410+2 \times 496)$
C $(410+2 \times 496)-(805+2 \times 460)$
D $(410+496)-(805+460)$

13 Which statements about hydrogen fuel cells are correct?
1 Water is formed as the only waste product.
2 Both water and carbon dioxide are formed as waste products.
3 The overall reaction is $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$.
4 The overall reaction is endothermic.
A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

14 Which list contains only chemical changes?
A melting, evaporating, dissolving
B rusting, freezing, subliming
C neutralisation, polymerisation, combustion
D boiling, condensing, distillation

15 The results of adding excess marble chips (calcium carbonate) to hydrochloric acid at $50^{\circ} \mathrm{C}$ and at $30^{\circ} \mathrm{C}$ are shown. Only the temperature is changed.

Which row describes the reacting particles at $30^{\circ} \mathrm{C}$ compared to those at $50^{\circ} \mathrm{C}$?

	collision rate	collision energy
A	higher	higher
B	higher	lower
C	lower	higher
D	lower	lower

16 Methane reacts with steam and an equilibrium is reached.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

The forward reaction is endothermic.
Which row shows how the amount of hydrogen at equilibrium changes when the pressure or temperature is changed as indicated?

	change in temperature	change in pressure	amount of hydrogen
A	decrease	no change	increase
B	increase	no change	decrease
C	no change	increase	decrease
D	no change	decrease	decrease

17 When aqueous iron(III) chloride is added to aqueous potassium iodide a chemical reaction occurs and iodine is formed.

Which statement is correct?
A lodide ions are oxidised, they gain electrons in this reaction.
B lodide ions are oxidised, they lose electrons in this reaction.
C Iron(III) chloride is oxidised in this reaction.
D Neither iodide ions nor iron(III) chloride is oxidised in this reaction.

18 The graph shows how the pH of a solution changes as an acid is added to an alkali.

$$
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water }
$$

Which letter represents the area of the graph where both acid and salt are present?

19 Which statement describes a weak acid?
A It is a proton acceptor and is fully ionised in aqueous solution.
B It is a proton acceptor and is partially ionised in aqueous solution.
C It is a proton donor and is fully ionised in aqueous solution.
D It is a proton donor and is partially ionised in aqueous solution.

9

20 The apparatus shown is used to prepare aqueous copper(II) sulfate.

What are X and Y ?

	X	Y
A	copper	aqueous iron(II) sulfate
B	copper(II) chloride	dilute sulfuric acid
C	copper(II) oxide	dilute sulfuric acid
D	sulfur	aqueous copper(II) chloride

21 Which process is not used in the preparation of an insoluble salt?
A filtration
B washing
C crystallisation
D drying

22 Which statement about Group I and Group VII elements is correct?
A Group VII elements are monoatomic non-metals.
B Lithium is more reactive with water than caesium.
C The melting points of Group I metals increase down the group.
D Potassium bromide reacts with chlorine to produce an orange solution.

23 The properties of the element titanium, Ti, can be predicted from its position in the Periodic Table.
Which row identifies the properties of titanium?

	can be used as a catalyst	conducts electricity when solid	has low density	forms coloured compounds
A	\checkmark	\checkmark	\checkmark	x
B	\checkmark	\checkmark	x	\checkmark
C	\checkmark	x	\checkmark	\checkmark
D	x	\checkmark	\checkmark	\checkmark

24 Which diagram shows a mixture of noble gases?
A

B

C

D

25 Which property is shown by all metals?
A They are extracted from their ores by heating with carbon.
B They conduct electricity.
C They form acidic oxides.
D They react with hydrochloric acid to form hydrogen.

26 Many metal carbonates decompose when they are heated.
Which row describes what happens when potassium carbonate, calcium carbonate and copper(II) carbonate are heated using a Bunsen burner?

	decomposes easily	decomposes with difficulty	does not decompose at Bunsen temperatures
A	calcium carbonate	copper(II) carbonate	potassium carbonate
B	copper(II) carbonate	calcium carbonate	potassium carbonate
C	copper(II) carbonate	potassium carbonate	calcium carbonate
D	potassium carbonate	calcium carbonate	copper(II) carbonate

27 Molten iron from the blast furnace contains impurities.
The process of turning the impure iron into steel involves blowing oxygen into the molten iron and adding calcium oxide.

What are the reasons for blowing in oxygen and adding calcium oxide?

	blowing in oxygen	adding calcium oxide
A	carbon is removed by reacting with oxygen	reacts with acidic impurities making slag
B	carbon is removed by reacting with oxygen	reacts with slag and so removes it
C	iron reacts with the oxygen	reacts with acidic impurities making slag
D	iron reacts with the oxygen	reacts with slag and so removes it

28 Four iron nails are added to four different metal sulfate solutions.
In which solution does a displacement reaction occur?
A copper(II) sulfate
B magnesium sulfate
C sodium sulfate
D zinc sulfate

29 Which statement about pure water is not correct?
A It condenses at $100^{\circ} \mathrm{C}$.
B It freezes at $0^{\circ} \mathrm{C}$.
C It turns cobalt(II) chloride paper blue.
D It turns anhydrous copper(II) sulfate blue.

30 Three processes in the carbon cycle are shown.
1 Methane reacts with oxygen producing carbon dioxide and water.
2 Carbon dioxide and water are absorbed and used by plants to make oxygen.
3 Oxygen is used by living things to release energy.
Which processes have taken place?

	1	2	3
A	combustion	photosynthesis	respiration
B	combustion	respiration	photosynthesis
C	photosynthesis	combustion	respiration
D	respiration	photosynthesis	combustion

31 In the Haber process, nitrogen and hydrogen are reacted to make ammonia.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
Which conditions produce the maximum yield of ammonia?

	pressure	temperature
A	high	high
B	high	low
C	low	high
D	low	low

32 Which process, used to prevent iron from rusting, involves sacrificial protection?
A alloying
B electroplating
C galvanising
D painting

33 A student suggests three uses of calcium carbonate (limestone).
1 manufacture of cement
2 manufacture of iron
3 treating alkaline soils
Which suggestions are correct?
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3

34 One of the reactions used in the manufacture of sulfuric acid is shown.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

Which catalyst is used to increase the rate of this reaction?
A iron
B manganese(IV) oxide
C vanadium (V) oxide
D nickel

35 Ethanol is made on an industrial scale by the fermentation of sugars or by the reaction of ethene with steam in the presence of a suitable catalyst.

What is a disadvantage of making ethanol from ethene rather than by fermentation?
A A continuous production process is used.
B A non-renewable raw material is used.
C The product is very pure.
D The rate of reaction is very high.

36 Which statement about compounds in the same homologous series is correct?
A They have the same chemical properties because they have the same number of carbon atoms.

B They have the same physical properties because they have the same number of carbon atoms.

C They have different chemical properties because they have different numbers of carbon atoms.

D They have different physical properties because they have different numbers of carbon atoms.

37 Increasing the number of atoms in one molecule of a hydrocarbon increases the amount of energy released when it burns.

What is the correct order?

	less energy released		
more energy released			
A	ethene	ethane	methane
B	ethene	methane	ethane
C	methane	ethane	ethene
D	methane	ethene	ethane

38 An organic compound, P, reacts with zinc to produce a gas, Q.
What are P and Q ?

	P	Q
A	ethanoic acid	carbon dioxide
B	ethanoic acid	hydrogen
C	ethanol	carbon dioxide
D	ethanol	hydrogen

39 Alkanes undergo substitution reactions in the presence of UV light.
Which equation represents a substitution reaction of ethane?
A $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{HCl}$
B $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$
C $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}+\mathrm{H}_{2}$
D $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{2}$

40 Which substances are natural polymers?
1 proteins
2 carbohydrates
3 nylon
4 poly(ethene)
A 1 and 2
B 1 and 3
C 2 and 3
D 3 and 4

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.
The Periodic Table of Elements

$\begin{gathered} 57 \\ \substack{57 \\ \text { lantanumu } \\ 139} \end{gathered}$	$\begin{gathered} 58 \\ \begin{array}{c} \text { cerium } \\ \text { ce } \\ 140 \end{array} \\ \hline \end{gathered}$	$\stackrel{59}{\mathrm{Pr}} \underset{\substack{\text { prasedymium }}}{ }$	$\begin{gathered} 60 \\ \substack{60 \\ \text { neodymium } \\ \text { neod }} \end{gathered}$	$\stackrel{61}{\substack{\text { Pm } \\ \text { cromentium }}}$	$\begin{gathered} 62 \\ \substack{6 m \\ \text { samatium } \\ 150} \end{gathered}$		$\underset{\substack{\text { gaddinium } \\ \text { gad } \\ 157}}{\substack{\text { Gd }}}$	$\begin{gathered} 65 \\ \hline \begin{array}{c} \text { Tetb } \\ \text { terbium } \\ 159 \end{array} \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { dyyprosium } \\ \text { dib3 } \end{gathered}$	$\begin{gathered} 67 \\ \begin{array}{c} 6 \mu \mathrm{c} \\ \text { nomium } \\ 165 \end{array} \end{gathered}$	$\begin{gathered} 68 \\ \begin{array}{c} 68 \\ \text { entium } \\ 167 \end{array} \end{gathered}$		$\begin{gathered} 70 \\ \mathrm{Yb} \\ \substack{\text { ytebibium } \\ 173} \end{gathered}$	$\begin{gathered} 71 \\ \substack{\text { Mutium } \\ 175 \\ 175} \end{gathered}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium	Th thorium	$\underset{\text { protactium }}{\mathrm{Pa}}$	$\underset{\text { unarium }}{\text { un }}$	Np	Pu puluonium	Am americium	Cm curium	$\underset{\text { benkelium }}{\mathrm{Bk}}$	Cf	$\underset{\text { einsterium }}{\text { Es }}$	Fm fermium	$\underset{\text { mendevium }}{\mathrm{Md}}$	No nobelium	$\underset{\text { lawencuium }}{\mathrm{Lr}}$

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

